Certain Sufficient Conditions for Close-to-Convexity of Analytic Functions

I. Kala Tripathi and Nimisha

a Department of Applied Mathematics, GNIT, Greater Noida, U.P., India; b Department of Applied Mathematics, SDCET, U.P., Ghaziabad, India.

Received: 23 March 2013; Accepted: 28 July 2013.

Abstract. The object of this paper is to derive certain sufficient conditions for close-to-convexity of certain analytic functions defined on the unit disk \(\Delta := \{ z \in \mathbb{C} : |z| < 1 \} \).

Keywords: Discrete Markovian service process; \(N \) threshold policy; Finite buffer; Queue; Supplementary variable

Index to information contained in this paper

1. Introduction
2. Main Results
3. Conclusion
4. Acknowledgement

1. Introduction

Let \(\mathcal{H}(\Delta) \) be the class of analytic functions in the unit disk \(\Delta := \{ z \in \mathbb{C} : |z| < 1 \} \) and \(\mathcal{H}[a, n] \) be the subclass of functions of the form \(f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots \). We denote \(\mathcal{H} = \mathcal{H}[1, 1] \). Let \(\mathcal{A} \) denote the subclass of \(\mathcal{H} \) normalized by the conditions \(f(0) = 0 = f'(0) - 1 \). Thus, the class \(\mathcal{A} \) consists of the functions of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n.
\]

Let \(\mathcal{S} \) be the subclass of \(\mathcal{A} \) consisting of univalent functions.

A function \(p(z) = 1 + p_1 z + p_2 z^2 + \cdots \) is said to be in the class \(\mathcal{P} \) if \(\text{Re} \, p(z) > 0 \). For two analytic functions \(f \) and \(g \), we say that \(f \) is subordinate to \(g \) or \(g \) is superordinate to \(f \), denoted by \(f \prec g \), if there is a Schwarz function \(w \) with \(|w(z)| \leq |z| \) such that \(f(z) = g(w(z)) \). If \(g \) is univalent, then \(f \prec g \) if and only if \(f(0) = g(0) \) and \(f(\Delta) \subseteq g(\Delta) \). A function \(f \in \mathcal{A} \) is starlike if \(f(\Delta) \) is starlike domain with respect to 0, and a function \(f \in \mathcal{A} \) is convex if \(f(\Delta) \) is a convex domain. Analytically, the
prerequisites are equivalent to the following conditions \(\frac{zf'(z)}{f(z)} \in \mathcal{P} \) and \(1 + \frac{zf''(z)}{f'(z)} \in \mathcal{P} \), respectively. The class of starlike and convex functions of order \(\alpha, (0 \leq \alpha < 1) \) is defined as follows:

\[
\Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha
\]

and

\[
\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha.
\]

These classes are denoted by \(S^*(\alpha) \) and \(K(\alpha) \) respectively. The class of close to convex functions is defined by

\[
\mathcal{C}(\alpha) := \{ f : f \in \mathcal{A}; \ \Re \left(\frac{f'(z)}{g'(z)} \right) > \alpha, z \in \delta, 0 \leq \alpha < 1; g \in \mathcal{K} \}.
\]

It is well known [1] that \(f \in K(\alpha) \Leftrightarrow zf'(z) \in S^*(\alpha) \). Thus, if \(f \in S^*(\alpha) \), then \(f \in \mathcal{C}(\alpha) \).

The following Lemma is needed in the present investigation:

Lemma 1.1 [2, 3] Let the function \(w(z) \) be analytic in \(\Delta \) with \(w(0) = 0 \). If \(|w(z)| \) attains its maximum value on the circle \(|z| < 1 \) at a point \(z_0 \in \Delta \), then \(z_0 w'(z_0) = cw(z_0) \), where \(c \geq 1 \).

2. **Main Results**

Theorem 2.1 Let \(c \geq 1 \) and one of the following conditions holds

1. \(A = 1, 0 < B < 1 \)
2. \(0 < A < 1, 0 \leq B < A \).

If the function \(f \in \mathcal{A} \) satisfies the inequality

\[
\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > 1 + \frac{Ac}{1 + A} + \frac{(1 + A)Bc}{(1 + B)^2} (z \in \Delta),
\]

then

\[
|f'(z) - 1| < |A - Bf'(z)|.
\]

Proof Let the function \(w \) be defined as

\[
f'(z) = \frac{1 + Aw(z)}{1 + Bw(z)}, \quad w(z) \neq -\frac{1}{B}.
\]

Then, clearly \(w \) is analytic in the unit disk \(\Delta \) with \(w(0) = 0 \). From (2), by a simple computation, we get

\[
1 + \frac{zf''(z)}{f'(z)} = 1 + \frac{Azw'(z)}{(1 + Aw(z))} - \frac{Bzw'(z)}{(1 + Bw(z))}.
\]
Suppose that there is a point \(z_0 \) in the unit disk \(\Delta \) with the properties \(|w(z_0)| = 1 \) and \(|w(z)| < 1 \), whenever \(|z| < |z_0| \). Now, from the Lemma 1.1, we have

\[
 z_0 w(z_0) = cw(z_0), \quad (c \geq 1, w(z_0) = e^{i\theta}, \theta \in \mathbb{R}).
\]

From (3) and (4), we obtain

\[
 \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) = 1 + \frac{Ac(\cos(\theta) + A)}{1 + A^2 + 2A \cos(\theta)} - \frac{Bc(\cos(\theta) + B)}{1 + B^2 + 2B \cos(\theta)} := u(\theta).
\]

A simple calculation shows that \(u(\theta) \) attains its maximum at \(\theta = 0 \) and

\[
 \max_{\theta \in \mathbb{R}} \{u(\theta)\} = 1 + \frac{Ac}{1 + A} + \frac{(1 + A)Bc}{(1 + B)^2}.
\]

Which is a contradiction to our hypothesis. Thus, \(|w(z)| < 1, \ z \in \Delta \) which implies that \(|f'(z) - 1| < |A - Bf'(z)| \). This completes the proof.

If we set \(B = 0 \) in the Theorem 2.1, then we have:

Corollary 2.2 Let \(c \geq 1 \) and \(0 < A < 1 \). If the function \(f \in A \) satisfies the inequality

\[
 \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > 1 + \frac{Ac}{1 + A} \quad (z \in \Delta),
\]

then

\[
 \text{Re}(f'(z)) > 1 - A.
\]

Which equivalently can be written as \(f \in C(1 - A) \).

If we set \(A = 1/2 \) and \(c = 1 \) in the Corollary 2.2, then we have:

Corollary 2.3 If the function \(f \in A \) satisfies the inequality

\[
 \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > 2.33 \quad (z \in \Delta),
\]

then

\[
 \text{Re}(f'(z)) > 1/2.
\]

Which equivalently can be written as \(f \in C(1/2) \).

Setting \(A = 1 \) in the Theorem 2.1, we have:

Corollary 2.4 Let \(c \geq 1 \) and \(0 < B < 1 \). If the function \(f \in A \) satisfies the inequality

\[
 \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > 1 + \frac{c}{2} + \frac{2Bc}{(1 + B)^2} \quad (z \in \Delta),
\]

then

\[
 |f'(z)| < \frac{2}{1 - B}.
\]
Setting \(B = 1/2 \) and \(c = 2 \) in the above corollary, we have:

Corollary 2.5 If the function \(f \in A \) satisfies the inequality

\[
\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > 2.88 \quad (z \in \Delta),
\]

then

\[|f'(z)| < 4. \]

3. **Conclusion**

In this paper several sufficient conditions for close-to-convexity of analytic functions are obtained. Further this paper leaves a scope to the researchers to discuss more general results in this direction using differential subordination.

4. **Acknowledgement**

The authors are thankful to the reviewer/referee for valuable comments.

References