HAAR WAVELET AND ADOMAIN DECOMPOSITION METHOD FOR THIRD ORDER PARTIAL DIFFERENTIAL EQUATIONS ARISING IN IMPULSIVE MOTION OF A AT PLATE

Authors

Department of Mathematics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab-144011, India

Abstract

We present here, a Haar wavelet method for a class of third order partial dierential
equations (PDEs) arising in impulsive motion of a flat plate. We also, present Adomain
decomposition method to find the analytic solution of such equations. Efficiency and
accuracy have been illustrated by solving numerical examples.

Keywords


R.A. Van Gorder, K. Vajravelu, Third-order partial differential equations arising in the impulsive motion of a at plate, Commun. Nonlinear Sci. Numer. Simul. 14 (6) (2009) 2629{2636.

A.M. Wazwaz, An analytic study on the third-order dispersive partial differential equations, Appl. Math. Comput. 142 (2) (2003) 511-520.

A.M. Wazwaz, Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations, Appl. Math. Comput. 195 (2) (2008) 754-761.

M. Mechee, F. Ismail, Z.M. Hussain, Z. Siri, Direct numerical methods for solving a class of third-order partial differential equations, Applied Mathematics and Computation 247 (2014) 663-674.

I. Teipel, The impulsive motion of a at plate in a viscoelastic

uid. Acta Mech 39 (1981) 277-9.

C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed parameter systems, IEE. Proc. Control Theory Appl. 144 (1997) 87-94.

U. Lepik, Numerical solution of evolution equations by the Haar wavelet method, Applied Mathematics and Computation 185 (2007) 695 -704.

U. Lepik, Numerical solution of dierential equations using Haar wavelets, Math. Comput. Simul. 68 (2005) 127-143.

U. Lepik, Application of the Haar wavelet transform for solving integral and differential equations, Proc. Estonian Acad. Sci. Phys. Math. 56 (1) (2007) 28-46.

I. Celik, Haar wavelet method for solving generalized BurgersHuxley equation, Arab Journal of Mathematical Sciences 18 (2012), 25-37.

G. Hariharan, K. Kannan, K.R. Sharma, Haar wavelet method for solving Fishers equation, Appl. Math. Comput. 211 (2009) 284-292.

G. Hariharan, K. Kannan, Haar wavelet method for solving FitzHugh-Nagumo equation, Int. J. Math. Stat. Sci. 2(2) (2010) 59-63.

A. Haar, Zur theorie der orthogonalen Funktionsysteme, Math. Annal. 69 (1910) 331-71.

G.B. Whitham, Linear and nonlinear waves, Wiley, New York, 1974.

G. Adomian, Solving Frontier Problems of Physics: The Decomposition Methods, Kluwer Academic Publishers, Boston (1994).