1
Department of Physical Sciences, Alhikmah University, Ilorin, Nigeria
2
Department of Mathematics, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
Abstract
The nonlinear conjugate gradient method solves issues of the frame: minimize f(x), x∈R employing an iterative plot, x(k+1)=x(k)+αkd(k), where f is a non-polynomial function. We utilized two variants of the optimum line search namely, direct and indirect methods, to compute the step-length in this paper. Both line searches yielded a great outcome when employed to a few unconstrained non-polynomial test functions.
Ishaq, A., Latunde, T., Jimoh, F. (2020). An Optimum Line Search for Unconstrained Non-Polynomial Test Functions Using Nonlinear Conjugate Gradient Methods. International Journal of Mathematical Modelling & Computations, 10(4 (Fall)), 295-309.
MLA
Adam Ajimoti Ishaq; Tolulope Latunde; Folashade Mistura Jimoh. "An Optimum Line Search for Unconstrained Non-Polynomial Test Functions Using Nonlinear Conjugate Gradient Methods". International Journal of Mathematical Modelling & Computations, 10, 4 (Fall), 2020, 295-309.
HARVARD
Ishaq, A., Latunde, T., Jimoh, F. (2020). 'An Optimum Line Search for Unconstrained Non-Polynomial Test Functions Using Nonlinear Conjugate Gradient Methods', International Journal of Mathematical Modelling & Computations, 10(4 (Fall)), pp. 295-309.
VANCOUVER
Ishaq, A., Latunde, T., Jimoh, F. An Optimum Line Search for Unconstrained Non-Polynomial Test Functions Using Nonlinear Conjugate Gradient Methods. International Journal of Mathematical Modelling & Computations, 2020; 10(4 (Fall)): 295-309.